40 research outputs found

    Opt-out consent in children’s emergency medicine research

    Get PDF
    There is global acceptance that individuals should be allowed to decide whether or not to take part in research studies, and to do so after being informed about the nature of the research and the risk that might attach to participation. The process of providing detailed information before seeking consent (formalised by signatures) in advance of undertaking research procedures may not be possible in some circumstances, and sometimes an amended approach may be adopted. The use of opt-out consent has been recognised as a valid and ethical means of recruiting participants to studies particularly with large samples and where the risk to participants is small. However, it is sometimes misunderstood and can be a problematic factor in being accepted by research ethics committees and governing authorities. This may be due partly to differing expectations of the amount of information and support offered, together with the nature of the process that is adopted to ensure that a decision has been made rather than consent simply being assumed. In accordance with ongoing discussions with young people, and following consultation with parents, an opt-out consent strategy including varied means of providing information was employed in a large study of 44,501 cases of children attending emergency or urgent care departments. The study was conducted over more than 12 months in dissimilar emergency departments and an urgent care unit, and was designed to support better decision-making in paediatric emergency departments about whether children need to be admitted to hospital or can be discharged home safely. Robust analysis of the factors that exerted the greatest impact on predicting the need to admit or the safety of discharging children led to a revised version of a an existing tool. In this article we review approaches to consent in research, the nature and impact of opt-out consent, the factors that made this an effective strategy for this study, but also more recent concerns which may make opt-out consent no longer acceptable. Keywords: Emergency department; Opt-out consent; Children, Ethics, Researc

    Imaging in population science: cardiovascular magnetic resonance in 100,000 participants of UK Biobank - rationale, challenges and approaches

    Get PDF
    PMCID: PMC3668194SEP was directly funded by the National Institute for Health Research Cardiovascular Biomedical Research Unit at Barts. SN acknowledges support from the Oxford NIHR Biomedical Research Centre and from the Oxford British Heart Foundation Centre of Research Excellence. SP and PL are funded by a BHF Senior Clinical Research fellowship. RC is supported by a BHF Research Chair and acknowledges the support of the Oxford BHF Centre for Research Excellence and the MRC and Wellcome Trust. PMM gratefully acknowledges training fellowships supporting his laboratory from the Wellcome Trust, GlaxoSmithKline and the Medical Research Council

    Feasibility of MR-Based Body Composition Analysis in Large Scale Population Studies

    Get PDF
    Introduction Quantitative and accurate measurements of fat and muscle in the body are important for prevention and diagnosis of diseases related to obesity and muscle degeneration. Manually segmenting muscle and fat compartments in MR body-images is laborious and time-consuming, hindering implementation in large cohorts. In the present study, the feasibility and success-rate of a Dixon-based MR scan followed by an intensity-normalised, non-rigid, multi-atlas based segmentation was investigated in a cohort of 3,000 subjects. Materials and Methods 3,000 participants in the in-depth phenotyping arm of the UK Biobank imaging study underwent a comprehensive MR examination. All subjects were scanned using a 1.5 T MR-scanner with the dual-echo Dixon Vibe protocol, covering neck to knees. Subjects were scanned with six slabs in supine position, without localizer. Automated body composition analysis was performed using the AMRA Profilerâ„¢ system, to segment and quantify visceral adipose tissue (VAT), abdominal subcutaneous adipose tissue (ASAT) and thigh muscles. Technical quality assurance was performed and a standard set of acceptance/rejection criteria was established. Descriptive statistics were calculated for all volume measurements and quality assurance metrics. Results Of the 3,000 subjects, 2,995 (99.83%) were analysable for body fat, 2,828 (94.27%) were analysable when body fat and one thigh was included, and 2,775 (92.50%) were fully analysable for body fat and both thigh muscles. Reasons for not being able to analyse datasets were mainly due to missing slabs in the acquisition, or patient positioned so that large parts of the volume was outside of the field-of-view. Discussion and Conclusions In conclusion, this study showed that the rapid UK Biobank MR-protocol was well tolerated by most subjects and sufficiently robust to achieve very high success-rate for body composition analysis. This research has been conducted using the UK Biobank Resource

    Impact of detecting potentially serious incidental findings during multi-modal imaging [version 3; referees: 2 approved, 1 approved with reservations]

    Get PDF
    Background: There are limited data on the impact of feedback of incidental findings (IFs) from research imaging.  We evaluated the impact of UK Biobank’s protocol for handling potentially serious IFs in a multi-modal imaging study of 100,000 participants (radiographer ‘flagging’ with radiologist confirmation of potentially serious IFs) compared with systematic radiologist review of all images. Methods: Brain, cardiac and body magnetic resonance, and dual-energy x-ray absorptiometry scans from the first 1000 imaged UK Biobank participants were independently assessed for potentially serious IFs using both protocols. We surveyed participants with potentially serious IFs and their GPs up to six months after imaging to determine subsequent clinical assessments, final diagnoses, emotional, financial and work or activity impacts. Results: Compared to systematic radiologist review, radiographer flagging resulted in substantially fewer participants with potentially serious IFs (179/1000 [17.9%] versus 18/1000 [1.8%]) and a higher proportion with serious final diagnoses (21/179 [11.7%] versus 5/18 [27.8%]). Radiographer flagging missed 16/21 serious final diagnoses (i.e., false negatives), while systematic radiologist review generated large numbers of non-serious final diagnoses (158/179) (i.e., false positives). Almost all (90%) participants had further clinical assessment (including invasive procedures in similar numbers with serious and non-serious final diagnoses [11 and 12 respectively]), with additional impact on emotional wellbeing (16.9%), finances (8.9%), and work or activities (5.6%). Conclusions: Compared with systematic radiologist review, radiographer flagging missed some serious diagnoses, but avoided adverse impacts for many participants with non-serious diagnoses. While systematic radiologist review may benefit some participants, UK Biobank’s responsibility to avoid both unnecessary harm to larger numbers of participants and burdening of publicly-funded health services suggests that radiographer flagging is a justifiable approach in the UK Biobank imaging study. The potential scale of non-serious final diagnoses raises questions relating to handling IFs in other settings, such as commercial and public health screening

    Multimodal population brain imaging in the UK Biobank prospective epidemiological study

    Get PDF
    Medical imaging has enormous potential for early disease prediction, but is impeded by the difficulty and expense of acquiring data sets before symptom onset. UK Biobank aims to address this problem directly by acquiring high-quality, consistently acquired imaging data from 100,000 predominantly healthy participants, with health outcomes being tracked over the coming decades. The brain imaging includes structural, diffusion and functional modalities. Along with body and cardiac imaging, genetics, lifestyle measures, biological phenotyping and health records, this imaging is expected to enable discovery of imaging markers of a broad range of diseases at their earliest stages, as well as provide unique insight into disease mechanisms. We describe UK Biobank brain imaging and present results derived from the first 5,000 participants' data release. Although this covers just 5% of the ultimate cohort, it has already yielded a rich range of associations between brain imaging and other measures collected by UK Biobank

    Financial Stability Monitoring

    Full text link

    Making Capitalism Work: Social Capital and Economic Growth in Italy, 1970-1995

    Full text link

    Control of peripheral nerve myelination by the beta-secretase BACE1

    No full text
    Although BACE1 (beta-site amyloid precursor protein-cleaving enzyme 1) is essential for the generation of amyloid-b peptide in Alzheimer's disease, its physiological function is unclear. We found that very high levels of BACE1 were expressed at time points when peripheral nerves become myelinated. Deficiency of BACE1 resulted in the accumulation of unprocessed neuregulin 1 (NRG1), an axonally expressed factor required for glial cell development and myelination. BACE1-/- mice displayed hypomyelination of peripheral nerves and aberrant axonal segregation of small-diameter afferent fibers, very similar to that seen in mice with mutations in type III NRG1 or Schwann cell-specific ErbB2 knockouts. Thus, BACE1 is required for myelination and correct bundling of axons by Schwann cells, probably through processing of type III NRG1.status: publishe
    corecore